CCÉTRURÉ DE CÔTAC CÔTAC CÔTAC ÉRIO ÉRITÉ DE CÔTAC ÉRITE ÉRITE ÉRITÉ DO ÉRITÉ DE CÉTR

DVV-003-016303 Seat No. ______ M. Sc. (Mathematics) (Sem. - III) (CBCS) Examination May / June - 2015

Course No: 3003: Number Theory - 1
(New Course)

		Faculty Code : 003 Subject Code : 016303									
Time	e : 2	$\frac{1}{2}$ Hours	s]					[Total	Marks	: 70	
		ions :		All qu	e are five uestions question	are o	compul	•			
1 Select the most appropriate answer for each of following											
	(a)	Using E		an algo	orithm we	e can	find		of two		
		(i) len	n			(ii)	gcd				
		(iii) pro	oduct			(iv)	sum				
	(b)	The nu	mber o	of prim	nitive roo	ts of	59 is				
		(i) 58				(ii)	30				
		(iii) 29				(iv)	28				
	(c)	If x^2+1	[≡0 (m	nod p)	has a so	olutio	n then	p =			
		(i) 59				(ii)	41				
		(iii) 79				(iv)	19				
	(d)	If x^2+1	l <u>=</u> 0 (n	$\equiv 0 \pmod{p}$ has a no solution then $p = 0$							
		(i) 13				(ii)	17				
		(iii) 29				(iv)	67				

	les									
		(i)	a only	(ii)	b only					
		(iii)	a and b both	(iv)	neither a nor b.					
	(f)		is the consequence	e of E	Euler's theorem.					
		(i) (iii)	Wilson's theorem Fermat's theorem	` '						
	(g)	If a	is odd then the larges		_					
		(i)	2	(ii)	8					
		(iii)	4	(iv)	16					
2	Atte	mpt	any two							
	(a) Define the greatest common divisor of two integrates									
		If g.c.d. of two integers a and b is then prove that								
		$(\frac{a}{g},$	$\frac{b}{g}$)=1.							
	(b) Suppose a and b are positive integers then prove									
	(a,b)[a,b] = ab.									
	(c) Suppose a and b are non zero integers and m is a positive integer then prove that m[a,b] =[ma,mb].									
3	All	comp	ulsory							
(a) Suppose $p_1, p_2,,p_k$ are the first k primes. The prove that $p_1, p_2,,p_k+1$ is also a prime number										
DVV	7-003	-0163	303] 2		[Contd	ł				

- (b) Suppose p and q are distinct primes each of which divides n. Prove that pq/n
- (c) Use the Euclidean Algorithm to find the greatest common divisor of 1001 and 347.

OR

- 3 All compulsory

 - (b) Find all solutions of $x^2 \equiv -1 \pmod{13}$ in the complete 4 residue system $\{0, 1, 2, ..., 12\}$.
 - (c) Determine whether the congruence equation $x^2 \equiv -1$ 3 (mod 79) has solution or not.
- 4 Attempt any two
 - (a) State and prove chinese remainder theorem.
 - (b) Find the solutions of the following congruence 7 equations if there is any.
 - (i) $x^2 1 \equiv 0 \pmod{15}$
 - (ii) $x^2 + 1 \equiv 0 \pmod{125}$
 - (c) Suppose m is a positive integer such that $m = m_1, m_2$ 7 $(m_1, m_2) = 1$, $(\phi(m_1), \phi(m_2)) \ge 2$. Prove that m has no primitive root. Give three positive integers of the above type which have no primitive roots.

- 5 Do as directed. All are compulsory and each question carries two marks.
 - (a) Give the statement of Wilson's theorem
 - (b) Write the statement of Hensel's Lemma.
 - (c) Find the primitive roots of 7^2 and 11^2 .
 - (d) Find the number of positive integers relatively prime to 1001×25×31.
 - (e) Write the statement of Divison Algorithm.
 - (f) Give all the positive divisors of p.q.r.s where p,q,r,s are distinct prime numbers.
 - (g) If p is prime number and $n \ge 1$ then what is the value of $\phi(p^n)$.